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But First...

@ Adaptive LP: Start with a small problem and add the constraints adaptively.
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M. H. Taghavi and P. H. Siegel, “Adaptive methods for linear programming =
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0 Graph-Based Detection
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Combined Channel Equalization and Decoding

@ Gain obtained by combining equalization and decoding

@ Need to exchange soft information between them.
@ SOVA /BCJR for equalization + message-passing

@ Exponential complexity in memory length
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Combined Channel Equalization and Decoding

@ Gain obtained by combining equalization and decoding

@ Need to exchange soft information between them.
@ SOVA /BCJR for equalization + message-passing

@ Exponential complexity in memory length

@ Incorporate the ISI channel into the decoding graph
@ Can combine with the Tanner graph of the LDPC code

@ Use linear programming (LP) or iterative message passing (IMP) for decoding

@ Kurkoski et al.: Bit-based detection

@ 4-cycles in the graph
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@ Goal: Find a graph representation where LP can be applied. uCcsb
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ML Detection in a PR Channel

nl
Channel [¥ | 0—> 1%, .| PRILDPC
Y= Zio hi%_; Encoder 1 —>_1 Decoder
@ Look for the codeword that minimizes
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ML Detection in a PR Channel

ye= 0o hi%e_j

Channet |¥, | 0—> 1
>
Encoder

1 —>-1

PR/LDPC
Decoder

@ Look for the codeword that minimizes

Z(ft -y = Z
t

2
[ftz —2n > hi%_i+ (Z hi;(ti> ]
t i i

= Z [I’tz + Z h,2)?t27, —2r Z hiXi_i +
t i i

5 hsoisi |
i#
const linear nonlinear
@ Optimization problem in general matrix form
Minimize

-q'x+ ;x"Px

N =

Subject to xecC

@ The general form of an integer quadratic programming problem (IQP)
@ If no coding, C = {0,1}"
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Linearization of the Objective Function

i 5 5i
@ Define state variables: Z’_> 0 1 _f’

1 —-1

Z;j = Xt - Xt—j orequivalently z ;= x; ® x;_; mod 2

@ The IQP can be rewritten as a decoding a binary linear code:
Minimize > g+ > > Azt
t t

Subjectto x €C,
Zj®Xx®x—_j=0 mod2, j=1,... u,
t=j+1,...,n
@ For the equalization problem
gt =>_ hiri — Output of matched filter

1

n—j
Atj=A=— Z hihiy;j < —1 x Correlation function of the channel
=0
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Tanner Graph Representation

@ PR layer:

@ nu degree-1 state bit nodes and degree-3 check
nodes

@ cycles of length 6 or more
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Tanner Graph Representation

@ PR layer:

@ nu degree-1 state bit nodes and degree-3 check
nodes

@ cycles of length 6 or more
@ LP decoding
@ Parity check ¢ with neighborhood N is relaxed to

State Bits

le.f Z xi <|V|—=1, YV C Ngs.t. |V]is odd
iev iENG\V

@ and x; € {0,1}isrelaxedto 0 < x; < 1.
@ ML certificate property
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Tanner Graph Representation

@ PR layer:

@ nu degree-1 state bit nodes and degree-3 check
nodes

@ cycles of length 6 or more
@ LP decoding
@ Parity check ¢ with neighborhood N is relaxed to

dxi— > xi<|V[—1, ¥V C Nest |V]isodd
icv iENg\V
@ and x; € {0,1}isrelaxedto 0 < x; < 1.
@ ML certificate property
@ IMP Decoding

@ Use the objective coefficients as estimates of the log-likelihood ratios (LLR)
@ Complexity per iteration is linear in block length and channel memory size
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9 Uncoded Detection
@ Performance Analysis
@ Simulation Results
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Project the Problem Back to n-D

@ The relaxation of the binary constraint  z;; = x; @ x;—; can be simplified as
Xt = X—j| <z <1 —|xt+ X —1].

@ Depending on the sign of its coefficient, A, z;; will be equal to one of the two
bounds.
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Project the Problem Back to n-D

@ The relaxation of the binary constraint  z;; = x; @ x;—; can be simplified as
Xt = X—j| <z <1 —|xt+ X —1].

@ Depending on the sign of its coefficient, A, z;; will be equal to one of the two
bounds.

@ Solve z; ; in terms of x;, and project the problem back to the n-D space:

Minimize f(x) = Zq,x,+ DD Pallxe = x|

tjixe,j>0

D Illxe 4 X — 11,

tj: A, ;<0
Subject to 0<xs<1,vt=1,...,n

@ Convex, piece-wise linear objective function.
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LP-Proper Channels: Guaranteed ML Performance

LP detection is guaranteed to find the ML solution if and only if the channel satisfies:

Weak Nonnegativity Condition (WNC): Every check node c.; that is on a
cycle in the Tanner graph corresponds to a nonnegative coefficient: A ; > 0.

@ We call them LP-proper channels.
@ Can interpret the problem as generalized
min-cut

Z Ziy Za Zmap Zeag
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LP-Proper Channels: Guaranteed ML Performance

LP detection is guaranteed to find the ML solution if and only if the channel satisfies:

Weak Nonnegativity Condition (WNC): Every check node c.; that is on a
cycle in the Tanner graph corresponds to a nonnegative coefficient: A ; > 0.

@ We call them LP-proper channels.
@ Can interpret the problem as generalized
min-cut

Z Ziy Za Zmap Zeag

The solution X of LP detection on any channel is in {0, 3,1}".
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Simulation: LP and MSA

| ——cH1,LP
| ——CH1,MSA
| —=—CH2,LP
—6— CH2, MSA ||

BER

Normalized SNR, dB

@ CH1: h(D)=1—- D —0.5D? — 0.5D° (satisfies WNC) «— LP-proper
@ CH2: h(D)=14+D-D*+D? — Asymptotically LP-proper
@ CH3: h(D)=1+D—- D?>-D° — LP-improper ucsD
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General Channels: High SNR Analysis

When is the performance of LP asymptotically close to ML?

@ LP detection has two dominant types of failure
@ Type 1 (E;): ML gives the correct solution x, but LP gives a fractional solution, X.
@ Type 2 (E): Both LP and ML fail to find the correct solution.
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General Channels: High SNR Analysis

When is the performance of LP asymptotically close to ML?

@ LP detection has two dominant types of failure
@ Type 1 (E;): ML gives the correct solution x, but LP gives a fractional solution, X.
@ Type 2 (E): Both LP and ML fail to find the correct solution.

@ Two extreme cases:

@ Pr[E{] < Pr[Ez] at high SNR: LP asymptotically achieves ML performance «—
Asymptotically LP-Proper Channel

@ Pr[E{]> 8 > 0, V SNR: LP performs poorly < LP-Improper Channel

Al

UcCsD

M. H. Taghavi, P. H. Siegel (UCSD) Equalization on Graphs



General Channels: High SNR Analysis

When is the performance of LP asymptotically close to ML?

@ LP detection has two dominant types of failure
@ Type 1 (E;): ML gives the correct solution x, but LP gives a fractional solution, X.
@ Type 2 (E): Both LP and ML fail to find the correct solution.

@ Two extreme cases:

@ Pr[E{] < Pr[Ez] at high SNR: LP asymptotically achieves ML performance «—
Asymptotically LP-Proper Channel

@ Pr[E{]> 8 > 0, V SNR: LP performs poorly < LP-Improper Channel
@ Sufficient condition for type-1 failure:

n
K€ {o,%,1} L f(R) — f(x) <0

@ Separate the signal and noise terms: f(X) — f(x) =5 +n
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General Channels: High SNR Analysis

When is the performance of LP asymptotically close to ML?

@ LP detection has two dominant types of failure
@ Type 1 (E;): ML gives the correct solution x, but LP gives a fractional solution, X.
@ Type 2 (E): Both LP and ML fail to find the correct solution.

@ Two extreme cases:

@ Pr[E{] < Pr[Ez] at high SNR: LP asymptotically achieves ML performance «—
Asymptotically LP-Proper Channel

@ Pr[E{]> 8 > 0, V SNR: LP performs poorly < LP-Improper Channel
@ Sufficient condition for type-1 failure:

n
K€ {o,%,1} L f(R) — f(x) <0

@ Separate the signal and noise terms: f(X) — f(x) =5 +n
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@ If 6 < 0 for some (x, X), the channel is LP-improper.
. UCSD
@ To find the dominant error event, we should optimize over x-and X.
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All-1 Event

@ The most interesting case is when X = [1,--- , 3]:

If the transmitted sequence is i.i.d. Bernouli(1/2), as n — oo

o
6—>n[\)\0\ —Z|A,-|] and ¢ = o%n[| o]

n
@ Natural to define doc £ 1 <|/\o| 2 /\,-|>
j:
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All-1 Event

@ The most interesting case is when X = [1,--- , 3]:

If the transmitted sequence is i.i.d. Bernouli(1/2), as n — oo

o
6—>n[\)\0\ —Z|A,-|] and ¢ = o%n[| o]

n
@ Natural to define doc £ 1 <|/\o| 2 /\,-|>
/:

The WER of uncoded LP detection with an i.i.d. Bernouli(1/2) sequence of
transmitted symbols goes to 1 as the block length n goes to infinity for any
SNR, i.e., the channel is LP-improper, if 6o, < 0.
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All-1 Event

@ The most interesting case is when X = [1,--- , 3]:

If the transmitted sequence is i.i.d. Bernouli(1/2), as n — oo

o
6—>n[\)\0\ —Z|A,-|] and ¢ = o%n[| o]

n
@ Natural to define doc £ 1 <|/\o| 2 /\,-|>
/:

The WER of uncoded LP detection with an i.i.d. Bernouli(1/2) sequence of
transmitted symbols goes to 1 as the block length n goes to infinity for any
SNR, i.e., the channel is LP-improper, if 6o, < 0.

LP-proper channels satisfy 6. > %
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Simulation Results: WER vs. 6.,

10°F . -, - . E
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channels of memory size 4. =
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a Combined Equalization and LDPC Decoding
@ Simulation Results
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Coded LP Detection

@ Add the relaxed parity-check constraints to the set of constraints.

@ These constraints cut some of the existing pseudo-codewords, and add some
new ones.

Consider a linear code with no ‘trivial” (i.e., degree-1) parity check, used on a channel
with 6o < 0. Then, coded LP detection on this system has a WER bounded below by
a constant at all SNR for large block lengths.
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Coded LP Detection

@ Add the relaxed parity-check constraints to the set of constraints.

@ These constraints cut some of the existing pseudo-codewords, and add some
new ones.

Corollary

Consider a linear code with no ‘trivial” (i.e., degree-1) parity check, used on a channel
with 6o < 0. Then, coded LP detection on this system has a WER bounded below by
a constant at all SNR for large block lengths.

Proof.

Follows from the analysis of uncoded detection and the fact that the all-} vector
satisfies all the non-trivial constraints of any linear code.
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Coded IMP Detection

@ Min-Sum Algorithm (MSA)
@ Use the LP coefficients {g;:} and {\;} as the

costs.

@ Sum-Product Algorithm (SPA)

@ Estimate “log-likelihood ratios” by multiplying {qg:}
and {\;;} by 2/52.

@ In the absence of ISI reduce to the true LLRs.

q,

Code Layer
PR Layer
4q;

N

N

Code Layer

. PR Layer
\.

N
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Coded IMP Detection

@ Min-Sum Algorithm (MSA)
@ Use the LP coefficients {g;:} and {\;} as the

costs.

@ Sum-Product Algorithm (SPA)

@ Estimate “log-likelihood ratios” by multiplying {qg:}

and {\;;} by 2/52.

@ In the absence of ISI reduce to the true LLRs.

the LDPC layer:

4q,

Code Layer
PR Layer
4q;

N
N

Code Layer

. PR Layer
\.

N

@ Use a selective rule for combining messages in order to mitigate the effect of
cycles in the PR layer.
@ To calculate the messages going to the PR layer only use the messages coming from
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Simulation Results

@ A randomly-generated regular LDPC
code of length 200, rate 1/4, and
variable degree 3.

@ The following PR channels:

@ No-ISI Channel: h(D) =1, .

©@ EPR4 Channel:

L T N NN
h(D) =1+ D —D? - D3 (6 = 0, Cmetersiusa NN TN
: ——EPR4, LP
LP-improper), e trRa MSA
107 Modified EPRA, LP |51 \eisfinisianst s s
© Modified EPR4: "'I,Téii"f‘;‘“’“"”s‘ N SN
h(D):1+D7D2+D3(5oo:%, me—eRamsa
Asymptotically LP-proper), W s 54/63 5 55 6 65 7

© PR4 Channel: h(D) = 1 — D?
(0oc = %, LP-proper).
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More on the EPR4 Channel

10°

@ With coding, there is a large gap
between LP, MSA, and SPA.

@ Unlike LP, IMP works on LP-improper
channels.

@ Some gain for MSA by selective € o2l
combining

=0~ Selective MSA
——SPA
- =0-" Selective SPA

»
107 H H Y
25 3 35 4 45 5 55 6 6.5 7
E/N,
v\
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e Conclusion
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Conclusion

@ Summary
@ Proposed a linear relaxation of the equalization problem
@ Easily applicable to combined equalization and decoding with LP or message passing
@ Derived necessary and sufficient conditions for optimal performance

Characterized the error events

@ |IMP is superior to LP in combined channel equalization/decoding

@ Outlook

Modifying the constraints/combining rules to improve on LP-improper channels

@ Applications in the context of PRML detection

Applications to 2-D ISI channels

Exact performance analysis, especially with coding
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